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BACKGROUND 

Those with upper-limb amputations have reduced 

sensory feedback, and this likely contributes to difficulties 

in performing daily activities [1]. Many attempts have been 

made to improve performance by providing sensory 

substitution, but few have succeeded with visual feedback 

present [2]. Research in computational motor control 

proposes three criteria for augmented feedback to be most 

useful. First, the feedback should provide information not 

available to other senses, notably vision [3]. Second, the 

feedback should have low uncertainty compared to the 

control of the task [4]. Third, feedback should provide 

information in the most uncertain reference frame (which, 

for EMG control, tends to be a local reference frame) [5]. 

These criteria suggest that a local, joint-based velocity 

feedback paradigm will improve prosthetic arm control, 

even for those with unaffected vision. 

The aim of this study was to determine if local joint-

based velocity feedback improves performance, even with 

vision present, during control of a 2 degree of freedom 

(DOF) myoelectric interface. 

METHOD 

Ten able-bodied subjects participated in the study, 

which was approved by our local ethics board. After 

providing informed consent, subjects controlled a 

myoelectric interface consisting of a virtual shoulder and 

elbow and were asked to perform time-constrained center-

out reaches, arriving at the target within 1.5 seconds. 

Subjects completed one session with no audio feedback, and 

one session with audio feedback provided, where amplitude 

corresponded to joint speed, with a different frequency for 

each joint. After subjects were familiarized with the task, 

the simulated dynamics were perturbed by reducing the 

damping coefficient of the joints. We measured the increase 

in reaching error and average movement speed post-

perturbation, and during reaches to different targets testing 

generalizability, and modeled the adaptation to these new 

system dynamics as an exponential decay function. 

RESULTS 

Subjects experienced a smaller increase in both reach 

errors and average speed immediately following the 

dynamic perturbation with audio feedback present. Though 

reaching errors were within baseline levels during the first 

generalization trial, speed increased by a smaller margin 

with audio feedback present. 

DISCUSSION 

These results suggest that local joint-based velocity 

feedback helped users recognize changed system dynamics 

and allow them to adapt faster to these new dynamics, even 

with vision feedback present. 
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